Neutralizing coronavirus
A molecular movie of photosynthesis
Photosynthesis is the process by which plants use water and sunlight to produce the carbohydrate molecules that sustain life on Earth. The molecular rearrangements involved in this process have been very difficult to study, because it is a kinetic process involving the subtle repositioning of atoms and the directed flow of electrons from one molecule to another. Now, using both synchrotron diffraction data, and data obtained at the LCLS (a free electron laser source), these researchers were able to delineate six distinct steps in the molecular movements that are part of the photosynthesis cycle.
First frames of a movie of the water oxidation reaction in nature: Light-induced changes observed at the Mn cluster of photosystem II as it goes through its catalytic cycle. (Credit: Berkeley Lab)
Kern et al “Structures of the intermediates of Kok’s photosynthetic water oxidation clock,” Nature Vol 563, pages 421–425 (2018).
Virus factories
J.M. Criglar, R. Anish, Liya Hu, S.E. Crawford, B. Sankaran, B.V.V. Prasad, and M.K. Estes, “Phosphorylation cascade regulates the formation and maturation of rotaviral replication factories,” PNAS, doi:10.1073/pnas.1717944115 (2018).
A new bacterial weapon discovered
Healthy bacteria (left) and bacteria (right) whose cell-division machinery has been disrupted by a toxin newly discovered in some bacterial arsenals. (Image credit: Mougous Lab) and featured on the LBNL Biosciences page here.
Ting et al, “Bifunctional Immunity Proteins Protect Bacteria against FtsZ-Targeting ADP-Ribosylating Toxins,” Cell, Vol 175, No5, P1380-1392.E14, Nov 15, 2018.
A selective drug
The “beta barrel” protein that was designed at the Institute for Protein Design. One end of the barrel is designed to stabilize the protein, and the other end creates a cavity that can bind the target molecule.
Designing a protein to capture a molecule
For the first time, scientists have created, entirely from scratch, a protein capable of binding to a small target molecule.
Previously, such small-molecule binding proteins have been made by altering proteins already existing in nature. That approach significantly limited the possibilities. The ability to make such proteins from scratch, or “de novo,” opens the way for scientists to create proteins unlike any found in nature. These proteins can be custom-designed with high precision and affinity to bind to and act on specific small molecule targets.
Unwinding DNA quadrulexes
DNA doesn’t just form the classic double-helix; it can also form quadruplexes, composed of two helices. The cell has specialized mechanisms using protein helicases to unwind this form of DNA when needed. The researchers in this study captured one of the steps during unwinding using crystallography. You can read more details at the ALS Science Briefs page here.
Programming DNA lattices
Researchers used the inherent programmability of DNA to create “designer” DNA lattices: three dimensional arrays of DNA in specific arrangements. The interactions between strands of DNA were controlled via Watson-Crick pairing, while the higher-order symmetry of the array was organized into repeating Holiday junctions. The result was a crystal of DNA of predicted symmetry and packing, providing a lattice with periodic cavities that could be used to hold proteins or other organic or inorganic materials. These programmed lattices are of great interest in a number of applications, from immobilizing enzymes for catalysis reactions to drug delivery systems.
F. Zhang, C.R. Simmons, J. Gates, Y. Liu, H. Yan, “Self-Assembly of a 3D DNA Crystal Structure with Rationally Designed Six-Fold Symmetry” Angew. Chem. 57, 12504-12507 (2018).
Damping down the immune response
Cytokines are proteins released by cells in order to influence the cells around them. Our immune systems release a particular type of cytokine, called a Interleukin-2, in order to regulate our immune response to perceived danger. This is useful to keep our immune response in check, because sometimes, as in the case of autoimmune diseases, the immune system will launch too great a response and end up doing more harm than good. Interleukin-2, therefore, is a potential therapy against autoimmune diseases.
Trotta et al, “A human anti-IL-2 antibody that potentiates regulatory T cells by a structure-based mechanism” Nature Medicine (2018).
Proteins responsible for pain sensing
From the ALS website:
Our daily function depends on signals traveling between nerve cells (neurons) along fine-tuned pathways. Central nervous system neurons contain acid-sensing ion channel 1a, a protein important in sensing pain and forming memories of fear. This channel opens and closes in response to changes in extracellular proton concentrations. When protons accumulate outside the neuron, the channel opens, allowing sodium ions to flow into the cell, depolarizing the cell membrane and generating an electrical signal. The channel eventually becomes desensitized to protons and the gate closes. Scientists have visualized both the open and desensitized channel structures, but the third structure, which forms when the protons dissipate and the channel closes, remained elusive until now.
Salt leakage in membrane proteins and periodic paralysis
Some inherited muscle diseases are characterized by periodic muscle paralysis. These diseases result from mutation of specific residues in sodium-channel proteins, which are responsible for controlling salt intake into cells and are the basis for maintaining voltage potentials which enable muscle contractions. In this study, the researchers used structural data on mutated and wild-type sodium channels to provide direct evidence for the “salt leakage” theory of how these channel proteins allow sodium ions back through the channels at the wrong time.
D. Jiang, T.M.G. El-Din, C. Ing, P. Lu, R. Pomes, N. Zheng, W.A. Catterall, “Structural basis for gating pore current in periodic paralysis.” Nature, 557, 590-594 (2018).
Windmilling out fluoride
Fluoride in the environment can be toxic to organisms, but some bacteria have developed specialized membrane channel proteins to expel fluoride. This mechanism of transporting fluoride very selectively without transporting chloride, which is much more abundant in the environment, has until recently been unknown. Using structures of several fluoride transporters, this study reveals a possible “windmill” mechanism of transport, in which a specific residue alternately flips conformation in order to bind or expel a fluoride ion.
“A CLC-type F-/H+ antiporter in ion-swapped conformations,” Nat. Struct. Mol. Biol. June, 2018. N.B. Last, R.B. Stickbridge, A.E. Wilson, T. Shane, L. Kolmakova-Partensky, A. Koide, S. Koide, C. Miller. https://doi.org/10.1038/s41594-018-0082-0
Controlling malaria infection
This research isolated human-derived antibodies and used them to confer protection against malaria in mice. The structural studies of the antibody at beamlines 5.0.1 and 5.0.2 showed how the antibody worked, and how to adapt it into a vaccine for humans. See also News & Views: “A new site of attack for a malaria vaccine.” (March 19, 2018)
N.K. Kisalu et al, “A human monoclonal antibody prevents malaria infection by targeting a new site of vulnerability on the parasite,” Nature Medicine 24(4), p.408. April 2018. doi:10.1038/nm.4512