(1) Quantitative Analysis of Footprinting

(2) Looking at Estrogen Receptor from Small Angles

Sichun Yang - Oct 8th, 2014 Center for Proteomics and Department of Pharmacology Case Western Reserve University

Schematic of Protein Footprinting Experiments

- Rate constants (k_{fp}) for different protein regions
- Similar to H/D exchange (backbone vs. sidechain)

Traditional analysis of footprinting and Challenges

Cross-site comparison?

(within each functional state)

Traditional analysis of footprinting data

From Janna

H/D exchange and the Protection Factor analysis

Bai and Englander 1993; Craig et al (2011); Marciano et al (2014)

A protection factor analysis for protein footprinting?

OH Intrinsic Reactivity of Amino Acids

			HO ⁻			e_{aq}^{-1}			
		substrate	rate (M ⁻¹ s	⁻¹) p ¹	H 1	rate $(M^{-1} s^{-1})^b$	pH		
		Cys	3.5×10^{1}	0 7.0		1.0×10^{10}	-7		
		Тгр т	1.3×10^{1}	0 6.5-	-8.5	3.0×10^{8}	7.8		
		l yr Met	1.3 × 10 ⁴	× 7.0	,	$2.8 \times 10^{\circ}$ 4.5×10^{7}	0.0		
		IVICI	0.5 X 10	0-7		4.5 × 10	1.5		
Cys ¹	Met ²	Trp	Tyr	Phe	His	Leu ³	Ile ³	Arg	Lys
29.2	20.5	17.4	12.0	11.2	10.0	9.3	4.4	2.9	2.2
Val	Thr	Ser	Pro	Glu	Gln	Asn	Asp	Ala	Gly
1.9	1.6	1.4	1.0	0.69	0.66	0.44	0.42	0.14	0.04
		Thr	$5.1 \times 10^{\circ}$	6.6		2.0×10^{7}	7.0		
		Lys	$3.3 \times 10^{\circ}$	6.6		2.0×10^{7}	7.4		
		Glu	3.2×10^{-10}	65		$^{5} \times 10^{7}$ 12 $\times 10^{7}$	57-7		
		Ala	7.7×10^{7}	5.5		1.2×10^{7}	7.4		
		Asp	7.5×10^{7}	6.9		1.8×10^{7}	7.0		
		Asn	4.9×10^{7}	6.6		1.5×10^{8}	7.3		
		Gly	1.7×10^{7}	5.9		$8.0 imes 10^8$	6.4		

 Table 1. Rate Constants for Reaction of Amino Acids with

 Hydroxyl Radical and Hydrated Electrons^a

^a http://allen.rad.nd.edu/browse compil.html. ^b Davies, M. J.; Dean, R. T. *Radical-mediated protein oxidation: from chemistry to medicine*; Oxford University Press: 1997; pp 44-45.

Taken from Xu and Chance (2005)

Examples of the footprinting-based PF analysis

	Peptides	k _{,fp} (s.d.) (unit: s ⁻¹)	logPF (s.d)	S _{CG} (s.d)	S _{all-atom} (s.d.)
1	E ₃₈ <u>P</u> GLQIWR ₄₅	0.44 (0.09)	4.27 (0.20)	9.0 (0.5)	10.1 (0.5)
2	<u>F49</u> DLVPVPTNL <u>Y</u> GDFFTGDAYVILK72	1.47 (0.09)	4.12 (0.06)	7.6 (0.2)	8.7 (0.3)
3	$Y_{\$7} WLGNECSQDESGAAAIFTVQLDD\underline{Y} LNGR_{115}$	1.86 (0.13)	4.12 (0.07)	6.7 (0.4)	8.3 (0.3)
4	E121VQGFESATFLGYFK135	0.69 (0.05)	4.46 (0.07)	6.6 (0.3)	7.9 (0.2)
5	G143GVASG <u>F</u> K150	0.48 (0.03)	3.57 (0.06)	4.7 (0.7)	6.6 (0.7)
6	H151VVPNEVVVQR161	0.80 (0.06)	3.42 (0.08)	2.7 (0.2)	4.9 (0.6)
7	P251ALPAGTEDTAK262	0.58 (0.05)	3.27 (0.09)	2.8 (0.3)	3.2 (0.3)
8	D371PDQTDGLGLSYLSSH386	0.68 (0.07)	4.16 (0.10)	6.4 (0.2)	7.5 (0.5)
9	R424IEGSNKV <u>P</u> VD <u>P</u> AT <u>Y</u> 438	0.78 (0.09)	3.72 (0.12)	6.7 (0.4)	6.8 (0.4)
10	V431PVDPATYGQFYGGDSYIILYNYR454	1.05 (0.10)	4.54 (0.10)	8.9 (0.2)	9.6 (0.3)
11	T ₅₇₁ PSAA <u>Y</u> LWVGTGASEAEK ₅₈₈	0.84 (0.09)	4.03 (0.11)	9.4 (0.3)	9.8 (0.4)
12	A600QPVQVAEGSEPDGFWEALGGK621	1.17 (0.04)	3.69 (0.03)	6.8 (0.5)	7.2 (0.3)
13	$Q_{722}G\underline{F}EPPSFVGWF\underline{L}GWDDD\underline{Y}WSVDPLDR_{748}$	1.91 (0.15)	4.16 (0.08)	6.9 (0.3)	8.2 (0.3)

TABLE 2. A list of peptides from human gelsolin with $k_{f\!\!p}$, logPF and ${\mathcal S}$ values.

Data of k_{fp} from Kiselar *et al* (2003)

Absolute quantification and Structural mapping enabled by the PF analysis

Low PF – exposed vs high PF - buried

Strong correlation of PFs with Protein structure

* little direct correlation with $k_{\rm fp}$'s

Strong correlation of PFs with Protein structure

•little direct correlation with k_{fp} 's

•Used single-residue; use SASA and S both

Going to Single-Residue Resolution

Huang, Ravikumar, Chance, Yang (2014) & Kaur et al (2015)

Going to Single-Residue Resolution

- The very same PF analysis (as to peptide-level)
- Identify interaction sites (or non-interacting)
- Broadly applicable to protein-protein complexes

Huang, Ravikumar, Chance, Yang (2014) & Kaur et al (2015)

Looking at Estrogen Receptor from Small Angles

Some Facts about BC:

No cure but wish to know: Transcriptional regulation by ER

ER dynamics: 1. DNA binding 2. Ligand binding 3. Ligand independence

Individual Domains of ER Organization

Computation as a tool for hypothesis generation: INSIDE-OUT for DNA binding

- Very different molecular shapes
- Very different interaction modes/sites

Computation as a tool for hypothesis generation: (1) Coarse-grained Simulations

- Two crystal structures of the ER ligand-binding domain
- Accurately reproduce the known transition

Ravikumar, Huang, Yang, Biophys J. (2012) & Huang, Ravikumar, Yang, JCTC (2014)

Computation as a tool for hypothesis generation: (2) An exhaustive search

Exhaustively search all six degrees of freedom (inter-domain)

Ravikumar, Huang, Yang, Biophys J. (2012); Ravikumar et al (TBS)

Computation as a tool for hypothesis generation: (3) Putative ER Conformations

- 1. Interact via a critical H12 helix; consistent with experiment (truncation of a H12containing region alters function)
- 2. Conformation-iv is similar to a new HNF complex (Chandra et al, Nature 2013)

Huang, Ravikumar, Greene, Yang, Proteins (2013); Huang et al (TBS)

Acquisition of SAXS data: Chromatography-coupled

S. Yang, Advanced Materials (2014)

Examples of ER Shape Models using SAXS data

Model for ER•DNA

Two Different Approaches of Modeling:

- Traditional: SAXS data as a source of input ("backward")
- Here: Plausible conformations to best-fit SAXS ("forward")

Hot-off-the-oven: Footprinting data of ER \pm DNA

Control: M490 has very similar rates (or PFs)

Hot-off-the-oven: Footprinting data of ER ± DNA

F208

0.8

0.6

F208 at DNA-binding sites:

more protected in the absence of DNA despite having different rates

Hot-off-the-oven: Footprinting data of ER ± DNA

C-terminal: L549 is well exposed (even compared to the control)

<u>Highly promising for complete structural determination:</u> More MS data + SAXS

Hot-off-the-oven: Footprinting data of ER ± DNA

C-terminal: L549 is well exposed (even compared to control)

More MS analysis coming soon

Hot-off-the-oven: Footprinting data of ER \pm DNA

Protection Factor					
Residue	+DNA	-DNA			
F208	1.90	1.95			
M490	1.48	1.53			
L549	0.07	0.02			

C-terminal: L549 is well exposed (even compared to control)

More MS analysis coming soon