PRACTICAL CONSIDERATIONS FOR FOOTPRINTING EXPERIMENTAL SETUP

JANNA KISELAR, CWRU

STRUCTURAL MASS SPECTROMETRY OCTOBER 8, 2014

Sources: Mass Spectrometry Analysis of Protein-Protein Interactions and Dynamics, Chance, *Wiley*, New Jersey;

Takamoto & Chance, Ann. Rev. Biophysics and Biophysical Chem. 2006

- Footprinting strategy
- Protein preparation
- Mass spectrometry detection and quantification of products
- Data analysis

FOOTPRINTING STRATEGY

EXPERIMENTAL WORKFLOW

CONDITIONS TO BE OPTIMIZED PRIOR TO EXPOSURE

- Protein concentration at 1-10 uM;
- To determine protein-protein complex ratio (size exclusion chromatography);
- To ensure that no protein aggregation (size exclusion chromatography);
- To determine optimal radical dose (Alexa experiments)
- •To determine quenching effects of the protein/buffer (Alexa experiments);

HOW TO DETERMINE COMPLEX RATIO ?

Size-exclusion chromatography (SEC)

QUENCHING OF RADICAL DOSAGE BY WEIGH OF THE PROTEIN

• Normalize beam conditions

DIGESTION

PEPSIN DIGEST CHROMATOGRAM OF SAMPLE

MULTIPLE CHARGE STATES

RT OF MODIFIED PRODUCTS

PEPTIDE FRAGMENT ION DESIGNATIONS AS PROPOSED BY ROEPSTROFF AND FOHLMAN

TANDEM MS EXAMPLE

DETERMINE RATES WITH 'OH DOSING

Fractional unmodified peptide determined from peak areas plotted versus increasing times of x-ray exposure

Takamoto, K. & M.R. Chance, Annu. Rev. Biophys. Biomol Struct. 2006. 35:251-76

COMPARE DOSE RESPONSES: CONFORMATION A VS. B

Change in Modification Rates = Change in the Solvent accessibility

DATA ANALYSIS: SOFTWARE

- Manually to calculate constant rates and to verify sites of modification
- MaxMatrix (http://www.massmatrix.net/mmcgi/search_form.py) - to determine sites of modification
- Mascot (Matrix Science) to determine sites of Modification
- ProtMapMS (in-house) all of the above

MassMatrix Database Search Engine

NEWS: MassMatrix search engine v2.4.0 has been released to support Ultraviolet Photodissociation (UVPD) and hybrid fragmentations with two or more methods, such as CID/HCD, UVPD/ETD and etc.

Basic Search Advanced Search / Cross Lin Quantitation	<u>Search Profile</u>	Results	<u>Data</u>	<u>Settings</u>	<u>Server</u>
--	-----------------------	----------------	-------------	-----------------	---------------

Tandem MS Database Search?

Supported Browsers: Firefox 3.0, Google Chrome 4.0, Sarafi 4.0, IE 8.0, Opera 10.0 or any newer versions of these browsers. Note: You may click on any field in the search form for help. Note: Simple instructions for searching cross-links and disulfide bonds between different proteins.Click here

Search Engine:	MassMatrix Xtreme 3.0.9.7 Alpha with 4M spectra limit, Dec 8 2011 (Latest release)										
Chooase Profile:	Most Recen	t Search (Default)		Save Form as	Save Form as Don't Save						
				Profile:							
*Data files:	Browse	No file selected.		Search data sets:	Individually						
	Janna_AB4	2_2_4mer_10ms_s	et1.mgf								
	Delete										
*Database:	Abeta42			*Enzyme:	Lysine-C no	P rule: K-X					
	Configure	Protein Databases			Lysine-C: K	-X(not P)					
					None Nonspecific/	Non-restricted					
Deserved at a hosses	Name			Missed alsonages							
Decoy database:	INONE			Niissed cleavages:	3						
Variable	Homoserine	of C-term M		Fixed	4-hydroxynonenal (HNE) of CHK						
modifications:	Hydrolmido	zolone		modifications: Acetylation of K							
	ICAT(TM)-	10 of C			Acetylation of N-term						
	ICAT(TM)-0	18 OT C ide/Carbamidamethyl	-		Acrylamide adduct of C						
	lodoacetam	ide/Carbamidometnyi	orC		Amidation	IC-term					
*Precursor ion tol.:	± 10	ppm		*Product ion tol.:	± 0.8	Da					
Max # PTM/peptide:	4			Mass type:	Monoisotopi	ic					
Min peptide length:	5	AA		Max peptide length:	50	AA					
Min pp score:	5.0			Min pptag score:	1.3						
Max # match/spec:	1			Max # comb/match:	3						
Fragmentation	CID			C13 isotope ions:	No						
method:	0.0				110						
Cross Link Search Options Click to expand											
Quantitation Options Click to expand											
Comment:				Expert options:							
	Search				Reset	:					

Fileds labeled by * are required!

MASS MATRIX READOUT

HIT 1

Protein Mass: 4511.270 (monoisotopic) 4514.061(average) Protein Score: 5006 Protein pp: 3672.0 Abeta42

Sequence:

001 DAEFRHDSGY EVHHQKLVFF AEDVGSNKGA IIGLMVGGVV IA

Sequence Coverage: 100% Sequence Tag Coverage: 97%

Index	scan#	charge	score	pp	pp2	PPtag	, m/z	MW(obs)	MW	del	ta miss	Uni	que seq	uence +	modifications	[start:end]
13553	4599	+2	23	11.1	11.4	4.4 5	17.2208	1033.4344	1033	.4334	0.0010	0	N .	DAEFRH	DSG	
13661	4545	+2	68	16.2	15.1	9.7 5	25.2175	1049.4278	1049	.4283	-0.0005	0	N	DAEFR	HDSG + ox16(4)	
13662	4526	+2	72	17.7	14.9	9.7 5	25.2177	1049.4281	1049	.4283	-0.0001	0	N	DAEFR	HDSG + ox16(4)	
13663	4590	+2	31	9.8	12.1	7.3 5	25.2185	1049.4297	1049	.4283	0.0015	0	N	DAEFRH	DSG + ox16(4)	
13663	4590	+2	24	8.7	12.5	4.0 5	25.2185	1049.4297	1049	.4283	0.0015	0	\checkmark	DAEFRH	DSG + ox16(5)	[1:9]
14470	5234	+2	58	10.9	14.4	11.4 5	98.7513	1196,4953	1196	. 4967	-0.0014	0	1	DAEFR	HDSGY	
14471	5375	+2	55	12.1	15.4	10.2 5	98.7513	1196.4953	1196	4967	-0.0014	0	Ń	DAEFR	HDSGY	
14472	5351	+2	63	14.9	16.7	14.3 5	98.7514	1196.4955	1196	.4967	-0.0012	0	Ń	DAEFR	HDSGY	
14473	5328	+3	41	10.9	8.7	5.1 3	99.5034	1196.4956	1196	.4967	-0.0011	0	V	DAEFR	HDSGY	
14474	5382	+3	34	13.5	9.8	5.1 3	99.5034	1196.4956	1196	.4967	-0.0011	0	\checkmark	DAEFR	HDSGY	
14475	5325	+2	94	19.4	16.7	14.3 5	98.7515	1196.4958	1196	.4967	-0.0009	0	\checkmark	DAEFR	HDSGY	
14476	5261	+2	21	9.6	8.4	9.0 5	98.7516	1196.4959	1196	.4967	-0.0008	0	\checkmark	DAEFR	HDSGY	
14477	5354	+3	34	12.1	9.1	5.1 3	99.5035	1196.4960	1196	.4967	-0.0007	0	\checkmark	DAEFR	HDSGY	
14478	5304	+2	93	19.4	15.8	14.3 5	98.7518	1196.4963	1196	.4967	-0.0004	0	V	DAEFR	HDSGY	
14479	5305	+3	43	10.2	8.6	6.0 3	99.5037	1196.4965	1196	.4967	-0.0002	0	\checkmark	DAEFR	HDSGY	
14480	5286	+2	88	18.6	15.8	14.3 5	98.7521	1196.4969	1196	.4967	0.0002	0	\checkmark	DAEFRH	DSGY	
14481	5289	+3	45	12.1	9.0	6.9 3	99.5038	1196.4969	1196	.4967	0.0002	0	\checkmark	DAEFRH	DSGY	
14568	5231	+2	48	14.9	14.1	11.4 6	06.7489	1212.4905	1212	.4916	-0.0011	0	N	DAEFR	HDSGY + ox16(4)
14568	5231	+2	40	14.9	14.8	15.5 6	06.7489	1212.4905	1212	.4916	-0.0011	0	N	DAEFR	HDSGY + ox16(5)
14568	5231	+2	42	15.6	13.1	11.4 6	06.7489	1212.4905	1212	.4916	-0.0011	0	N	DAEFR	HDSGY + ox16(6)
14569	5235	+3	19	10.6	8.3	8.3 4	04.8351	1212.4908	1212	.4916	-0.0008	0	N	DAEFR	HDSGY + ox16(5)
14569	5235	+3	21	9.6	7.5	6.9 4	04.8351	1212.4908	1212	.4916	-0.0008	0	N	DAEFR	HDSGY + ox16(6)
14570	5253	+3	34	12.1	7.9	6.9 4	04.8353	1212.4913	1212	.4916	-0.0003	0	N	DAEFR	HDSGY + ox16(4)
14570	5253	+3	33	14.1	9.0	8.3 4	04.8353	1212.4913	1212	.4916	-0.0003	0	N	DAEFR	HDSGY + ox16(5)
14570	5253	+3	35	12.1	8.0	6.9 4	04.8353	1212.4913	1212	.4916	-0.0003	0	V	DAEFR	HDSGY + ox16(6)

42

REFERENCES

- Takamoto & Chance, Ann. Rev. Biophysics and Biophysical Chem. ,2006.
- Xu G, Chance MR. Chem Rev. 107(8), 3514-43. Review, 2007.
- Gupta et al., J. Synch. Rad., 2007.
- Xu, G, Kiselar, J, He, Q, Chance, MR., Anal. Chem., 77(10), 3029-37, 2005
- Kiselar JG, Chance MR. J Mass Spectrom. 45(12), 1373-82, 2010.
- Bohon J, D'Mello R, Ralston C, Gupta S, Chance MR. J Synchrotron Radiat. Jan;21(Pt 1):24-31, 2014.
- Gau BC, Sharp JS, Rempel DL, Gross ML., Anal Chem. 81(16), 6563-71, 2009.